
www.manaraa.com

ORIGINAL ARTICLE

Using security robustness analysis for early-stage validation
of functional security requirements

Mohamed El-Attar • Hezam Akram Abdul-Ghani

Received: 17 December 2013 / Accepted: 24 July 2014 / Published online: 13 August 2014

� Springer-Verlag London 2014

Abstract Security is nowadays an indispensable

requirement in software systems. Traditional software

engineering processes focus primarily on business

requirements, leaving security as an afterthought to be

addressed via generic ‘‘patched-on’’ defensive mecha-

nisms. This approach is insufficient, and software systems

need to have security functionality engineered within in a

similar fashion as ordinary business functional require-

ments. Functional security requirements need to be elicited,

analyzed, specified and validated at the early stages of the

development life cycle. If the functional security require-

ments were not properly validated, then there is a risk of

developing a system that is insecure, deeming it unusable.

Acceptance testing is an effective technique to validate

requirements. However, an ad hoc approach to develop

acceptance tests will suffer the omission of important tests.

This paper presents a systematic approach to develop

executable acceptance tests that is specifically geared for

model-based secure software engineering processes. The

approach utilizes early-stage artifacts, namely misuse case

and domain models, and robustness diagrams. The feasi-

bility of the proposed approach is demonstrated by apply-

ing it to a real-world system. The results show that a

comprehensive set of security acceptance tests can be

developed based upon misuse case models for early-stage

validation of functional security requirements.

Keywords Misuse case model � Security robustness

analysis � Acceptance tests � Functional security

requirements

1 Introduction

Nowadays, software systems are rarely developed to

operate in a stand-alone mode. All software systems are

connected to other systems that may inflict harm, and

therefore, defensive mechanisms need to be in place in

order to mitigate such threats. It is also unrealistic to

assume that human users of software systems will always

intend to use it in a legitimate manner. Misuse of software

systems by humans must also be addressed. Traditional

methods of software development focus on the imple-

mentation of business-related functional requirements

while addressing security issues toward the end of the

development process. Security is addressed by supple-

menting the end system with defensive mechanisms such

as firewalls, cryptography and IDS (intrusion detection

system). Research evidence has proven that such approa-

ches to address security-related concerns are insufficient

and will likely cause costly reworks in addition to any

intangible consequences caused by a security breach [1].

To avoid these costly reworks, security concerns need to be

addressed as early as the requirements engineering phase.

To this end, secure software engineering has recently

become a very active area of research.

Functional requirements validation is a crucial activity

in any software development process. Overlooking

requirements validation can lead to the development of the

incorrect system (a system that does not satisfy its func-

tional requirements). Similarly, functional security

requirements need to be validated. Failure to validate

M. El-Attar (&) � H. A. Abdul-Ghani

Information and Computer Science Department,

King Fahd University of Petroleum and Minerals,

P.O. Box 5066, Dhahran 31261, Kingdom of Saudi Arabia

e-mail: melattar@kfupm.edu.sa

H. A. Abdul-Ghani

e-mail: akramhezam2008@gmail.com

123

Requirements Eng (2016) 21:1–27

DOI 10.1007/s00766-014-0208-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-014-0208-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-014-0208-9&domain=pdf

www.manaraa.com

functional security requirements can lead to the develop-

ment of an insecure system. A mis/use case model can be

used as a basis for requirements validation. However, the

requirements validation process can be made more rigorous

using acceptance testing [2]. Acceptance testing in the

requirements engineering phase can be very beneficial as it

is cost effective. Acceptance testing provides a new

viewpoint for customers to validate a system’s require-

ments through a set of tests (i.e., understanding through

examples of use). In a secure software engineering process,

acceptance testing is equally beneficial since it can be used

as a basis for early-stage validation of functional security

requirements. The development of these tests and dry-

running their expected outputs also provides developers

with a more accurate understanding of a system’s expected

behavior. The developed acceptance tests can be used to

define acceptable external quality, to refine the require-

ments specifications and to track a project’s progress. The

tests can be created using simple syntax which allows them

to be developed quickly while being understandable to

non-technical stakeholders. The syntax used to create the

acceptance tests, although simple, is sufficient to make

them machine executable. The literature constantly urges

for increased customer involvement during requirements

construction and system evaluation, and acceptance testing

partially fulfills this perceived need [3].

The current state of practice finds acceptance testing

mostly deployed in agile processes and underutilized in the

more formal, model-driven, processes. Since acceptance

tests are developed based on requirements artifacts, there-

fore they are often constructed from user stories [4]. It will

be advantageous to reap the benefits of acceptance testing

in large-scale development projects. However, large-scale

development projects do not use user stories. Large-scale

development projects deploy a more rigorous, model-ori-

ented, development process such as the V-Model. The

UML is commonly used in such large-scale projects. In the

requirements engineering process, functional requirements

are elicited, communicated and modeled as use cases.

Although use case modeling is a very popular technique in

industry, it does not support the elicitation and specification

of functional security requirements. To counter this deficit,

use case modeling has been extended by Sindre and Opdahl

[5] to account for functional security requirements. The

extended modeling technique is named misuse case mod-

eling [5]. The misuse case modeling technique has emerged

during the past decade as a promising technique to elicit

and model functional security requirements [5–8]. Misuse

cases define improper usage scenarios of a system by its

external entities that may lead to harmful consequences in

a very similar way that use cases describe legitimate usage

instances. The literature has already reported a number of

successful industrial experiences with misuse case

modeling [9, 10]. In order to reap the benefits of acceptance

testing in large-scale projects and validate functional

security requirements, we propose an approach to develop

acceptance tests from misuse cases. The approach proposed

in this paper provides a systematic method to develop a

comprehensive set of executable security acceptance tests

using artifacts already available during the requirements

phase. The artifacts used are a misuse case model and a

domain model. The proposed approach uses these artifacts

to perform security robustness analysis to develop security

robustness diagrams. It is important to note that our pro-

posed approach is not intended to replace or improve upon

any other approaches that develop acceptance tests. In fact,

we recommend using our approach in parallel with other

requirements validation techniques.

The remainder of this paper is structured as follows:

Sect. 2 provides a brief introduction to misuse case mod-

eling. Section 3 discusses related research works. In Sect.

4, the proposed methodology is presented. Automation

support is discussed in Sect. 5. Section 6 presents a case

study pertaining to a FSC subsystem. Finally, Sect. 6

concludes and suggests future work.

2 Background

The misuse case modeling technique was introduced by

Sindre and Opdahl in 2000 [5] as an extension to use case

modeling. This extension was proposed since the use case

modeling notation and its semantics do not support the

elicitation and modeling of functional security require-

ments. The misuse case modeling notation and its seman-

tics were purposely designed with great resemblance to the

use case modeling notation. The main contribution of

misuse case modeling is the introduction of two new

concepts, namely misuse cases and misusers. The notation

and semantics of misuse cases and misusers are in line with

the definition of use cases and actors, respectively. Misuse

cases and misusers are defined in [5] as follows:

Misuse Case: ‘‘A Sequence of actions, including

variants, that a system or other entity can perform,

interacting with misusers of the entity and causing

harm to some stakeholder if the sequence is allowed

to complete’’ [5].

Misuser: ‘‘An actor that initiates misuse cases, either

intentionally or inadvertently’’ [5].

Misuse cases may share the same relationships between

them as do use cases, namely the include, extend and

generalization relationships. Misusers may only share a

generalization relationship between them as do actors.

Misuse cases and misusers are depicted as ovals and

stickman figures, respectively, to signify their semantic

2 Requirements Eng (2016) 21:1–27

123

www.manaraa.com

resemblance to use cases and actors. However, misuse

cases and misusers are depicted with inverted colors to

signify that they are the inverse of use cases and actors,

respectively. Misusers are linked with misuse cases using

only the association relationship, which is also the only

relationship that can exist between actors and use cases.

Misuse case modeling introduces two new relationships:

the threatens and mitigates relationships. A threatens

relationship may only be directed from misuse cases to use

cases. The threatens relationship states that the given

misuse case threatens the security of the system when the

given use case is being performed. The mitigates rela-

tionship may only be directed from use cases to misuse

cases. The mitigates relationship states that the given use

case is performed to mitigate against the threat posed by

the given misuse case [5].

Misuse cases depicted in the diagram are supplemented

with textual descriptions. The textual descriptions explain

in detail the threatening behavior of each misuse case.

There are various templates proposed to describe misuse

cases [11, 12]. The proposed templates are often based on

popular use case templates such as in [13, 14]. The

behavior is therefore described at the interaction level

between the underlying system and other entities external

to it. The actual behavior of each use case and misuse case

is obtained from the textual descriptions while the diagram

acts as a visual summary to all entities involved. Figure 1

shows an example of a misuse case diagram.

The misuse case diagram shown in Fig. 1 is concerned

with a restaurant search feature available to customers. The

feature is described by the ‘‘Search Restaurants’’ use case.

A crook restaurant owner intercepts the search request and

manipulates the results, as modeled by the ‘‘Manipulate

Results’’ misuse case, most likely to promote their own

restaurant unfairly. To defend against this threat, a new use

case named ‘‘Encrypt Data’’ is introduced to mitigate the

‘‘Manipulate Results’’ misuse case by encrypting the search

request.

3 Exploiting use cases to derive acceptance tests

A number of research works have proposed various

methods to develop tests based on use case descriptions

[15–18]. Unlike the approach proposed in this paper which

produces acceptance tests, the type of tests created in these

works is system tests [15–18]. System testing is an essential

component of the overall verification and validation effort

as stated in the V-Model. However, there are differences

between acceptance and system testing and thus neither can

substitute for the other. As a prelude to comparing our

approach with the other works, the distinction between

acceptance and system testing is identified. Table 1 com-

pares acceptance and system testing with respect to their

purpose and their intended users.

The purpose and properties of acceptance testing, as

outlined in Table 1, suggest that any technique aimed at

developing acceptance tests should ideally satisfy the fol-

lowing criteria:

Criteria 1 Low technical difficulty to be used by

customers and business analysts (BAs) as they will be

highly involved.

Criteria 2 Applicable in the early phases of the

development life cycle to be useful for validation.

Criteria 3 Bridges the gap between the analysis and

design phases.

Criteria 4 Produces executable tests.

Criteria 5 Produces reusable tests.

Criteria 6 Produces tests that cover inter-use case

relationships, namely the include and extend

relationships.

Criteria 7 Produces tests that validate and verify

functional security requirements.

Criteria 8 Describes in detailed how to be systematically

applied.

The TOTEM (Testing Object-OrienTed systEms with

the Unified Modeling Language) methodology utilizes

various analysis artifacts, such as use case models,

sequence, collaboration and class diagrams to develop test

cases [16]. Sequence, collaboration and class diagrams are

usually unavailable until after the completion of the design

phase (criterion-2). The TOTEM methodology prescribes

that analysis artifacts need to be heavily augmented with

OCL (Object Constraint Language) expressions. The

technique introduced in [17] was also based on extending

use cases with contracts to facilitate test case generation. It

is safe to assume that learning and using OCL effectively is

Fig. 1 A misuse case diagram

example

Requirements Eng (2016) 21:1–27 3

123

www.manaraa.com

an advanced skill beyond what can be expected from a

customer or a BA (criterion-1). According to the duties and

skills set of BAs outlined by BABOK (Business Analysts

Body of Knowledge) [19], which is a well-recognized

official reference used by BAs to attain their BA certifi-

cation, it can be deduced that a BA cannot be expected to

perform any activities that can be considered technically

highly complex. In [18], an approach named the SCENT-

Method was introduced. The SCENT-Method is concerned

with systematically constructing statecharts from use case

scenarios. The statecharts are detailed with pre- and post-

conditions, data ranges, data values and non-functional

requirements. Users of the SCENT-Method need to cross-

check the statecharts for any inconsistencies, incorrectness

and incompleteness. Once again, this approach is techni-

cally too demanding to be performed effectively by a

customer or a BA (criterion-1). According to BABOK, the

skill set required by the approach presented in this paper

should be possessed by BAs (criterion-1) [19]. The only

exception is the skill of performing robustness analysis.

However, in previous work [20], it was empirically vali-

dated that BAs can effectively perform robustness analysis

using a small learning curve and without the need for in-

depth knowledge of object-oriented concepts.

None of the previously mentioned approaches produce

executable acceptance tests (criterion-4), which in turn

hinders their reusability of the tests created (criterion-5).

The approach presented in [15] can be used to derive

executable test cases from UML diagrams. The limitation

of this approach is that it requires detailed sequence and

communication diagrams to be available. These are detail

design artifacts that are ideally expected to be constructed

and communicated by system designers not customers and

BAs (criteria-1 ? 3). Therefore, the requirements of the

approach presented in [15] prevent it from being performed

during the early phases of the development process (cri-

terion-2). An approach developed in previous work [21]

satisfies criteria-1 ? 5, but not criteria-6 and 7. The

approach presented in this paper was specifically designed

to account for functional security requirements and inter-

use case relationships, in addition to satisfying criteria-

1 ? 5. There are important characteristics about the

approach presented in this paper which differentiates it

from the approach in [21]. Firstly, the approach presented

in [21] only considered use cases, not misuse cases.

Although misuse cases are semantically similar to use

cases, their execution interferes with the execution of a use

case. This means that misuse cases are performed in par-

allel with use cases. Misuse case behavior does not simply

plug-into the behavior of a use case as is the case of a

function calling another function. In fact, this characteristic

of misuse case modeling motivated the development of

mal-activity diagrams in order to model and communicate

misuse behavior more accurately [22]. The behavioral

characteristics of misuse cases significantly compound

their analysis which is required to produce acceptance tests.

Secondly, the approach presented in [21] does not account

for relationships between use cases such as the include and

extend relationship. The approach presented in this paper

accounts for such relationships, in addition to relationships

Table 1 Acceptance testing vs. system testing

Acceptance testing System testing

What

and

When?

Prior to development

Acceptance test development is a validation process in whereby

the tests are created and their results dry-run for the purpose of

ensuring that the ‘‘correct’’ system will be built. There is

multitude of sources for acceptance tests. In large-scale

projects, tests are commonly derived from use cases and

domain models

System testing is a verification process the exercises the system

to determine whether it actually produces the expected results

based on given input. System testing is performed before

delivery to observe the system behavior as a whole and to

detect and fix bugs. System testing is therefore conducted only

after the SUT (system under test) has been developed. System

tests are usually derived from acceptance tests and other system

design artifacts
After development

Acceptance testing here is a verification process used to show the

customer that the system satisfies the agreed upon requirements.

Acceptance testing is used to determine that the software

developed is properly operating on-site. Moreover, it is used as

checklist and a basis for contract satisfaction

Who? Customers, end users and business analysts (or requirements

engineers) ideally will collaborate during the requirements

engineering phase to create user acceptance tests. Customers

and end users are crucial aspect since they possess valuable

about the problem domain and the required functionalities.

Business analysts apply analytical techniques to derive tests to

determine whether the requirements are complete, consistent

and correct

Software developers will ideally create system tests to guide their

development activities. Software testers will use the developed

system tests to check for bugs

4 Requirements Eng (2016) 21:1–27

123

www.manaraa.com

between misuse cases and use cases, namely the threatens

and mitigates relationships. The approach presented in

[23] is similar to [21] with the exception that it accounts

for relationships between use cases. The approach in [23]

does not account for security aspects (criterion-7). The

approach in [23] does not utilize robustness diagrams, and

hence, it does not bridge the gap between the analysis and

design phases (criterion-3). The approach presented by

[24] allows for acceptance testing but as a verification tool

not a validation tool. This means that the approach by

[24] would ideally be used toward the end of a V-Model

development process. The approach by [24] performs

acceptance testing by aggregating unit tests into integra-

tion tests, then integration tests into system and accep-

tance tests. This requires a great deal of design and

perhaps coding to be performed upfront. Therefore, the

approach presented by [24] does not satisfy criterion-2.

The approach presented by [24] also does not account for

relationships between use cases, and it does not consid-

ered security aspects specifically with misuse cases. In

[25], the authors present one of the earliest documented

use case-based acceptance testing approaches. The

approach was described at a very abstract level, and it

also does not account for security aspects. Apart from [16,

17], no other approach presented a detailed and systematic

approach to their methodologies. Most approaches were

presented at a high level that leaves its users with the

challenge of how to apply them precisely and effectively,

including our previous work [21]. A summary of the

above-mentioned criteria satisfaction by the various

approaches for test generation is presented in Table 2.

4 Methodology

In this section, we will explain the proposed methodology

that will yield executable acceptance tests to validate

functional security requirements stated in misuse case

models. The proposed methodology consists of three main

phases. The main phases are briefly described below, and

an overview of the overall methodology is shown in Fig. 2.

Tasks that are fully or partially tool supported are anno-

tated with the label ‘‘auto.’’ A detailed of the automation

support provided is presented in Sect. 5. The main phases

of the proposed methodology are described in greater detail

in Sects. 4.1, 4.2 and 4.3.

Phase 1 Develop security acceptance tests at a high level

based on each set of interrelated use and misuse cases

(Fig. 3). Use and misuse cases are considered interre-

lated when they form a web of associations that consists

of a usage scenario; behavior that threatens the system

when performing this usage scenario; and mitigation

behavior. The high-level security acceptance tests

(HLSATs) are used to draw quick feedback from

stakeholders to validate the functional security require-

ment. The other purpose of the high-level acceptance

tests to determine the necessary inputs or triggers of the

use and misuse cases.

Phase 2 Perform security robustness analysis to create

and utilize objects that realizes the behavior of the use

and misuse cases. A separate security robustness

diagram will be created to model the objects represent-

ing a set of interrelated use and misuse cases.

Phase 3 For each security robustness diagram, its object-

level information is used to realize the high-level

security acceptance tests previously developed in phase

1 by transforming them into an executable form.

Phase 4 This phase occurs post-development. In this

phase, the executable security acceptance tests created

are used to test the system in order to verify that it is

functioning as expected in case of misuse.

4.1 Phase 1: Developing high-level security acceptance

tests

The narratives of use and misuse cases are used as basis for

developing informal and abstract-level descriptions of

security acceptance tests (HLSATs). HLSATs are devel-

oped to disconnect the process of identifying acceptance

tests from any technical details such as that concerned with

the syntax of a programming language. As such, the user of

Table 2 Comparison of

techniques presented in the

literature

Criterion [16] [17] [18] [15] [24] [25] [23] [21] This Paper

1 4 4 4 4

2 4 4 4 4 4

3 4 4 4 4

4 4 4 4 4 4 4

5 4 4 4 4 4 4

6 4 4 4 4

7 4

8 4 4 4

Requirements Eng (2016) 21:1–27 5

123

www.manaraa.com

the proposed technique will be able to focus on determin-

ing the essential set of acceptance tests without being

distracted by syntactical details. HLSATs are developed by

determining sets of use cases, misuse cases that threatens

them and their mitigation use cases. For each set, their

narratives are analyzed to systematically create the neces-

sary acceptance tests. The acceptance tests developed

should cover the various usage scenarios. As is the case

with any type of test, acceptance tests are comprised of

inputs and expected outputs. Input can be in the form of

data or a series of functional calls. Tests are evaluated by

checking the system’s resulting output or final state. In

order to determine this essential information, the user of

the proposed technique asks three key questions:

Question 1: What are the usage scenarios that span the

set of use cases, their misuse cases and their mitigation

use cases?

Usage scenarios are not confined to just one mis/use

case. Misuse scenarios and the counter mitigation

behavior are described across a pattern of mis/use cases.

The pattern includes ordinary use cases that contain

business-related behavior, misuse cases that execute

harmful behavior and mitigation use cases that describe

the behavior necessary to mitigate the threatening

behavior. Ideally, the threatened use case will include

the mitigation use case to call upon its mitigation

behavior. This pattern is shown in Fig. 3. The usage

patterns detected will lead to the identification of usage

(Phase 1)
Develop high level

security acceptance
tests (HLSATs) -

((auto))

(Phase 2)
Perform security

robustness analysis
((auto))

(Phase 3)
Develop executable
security acceptance

tests (ESATs)

(Phase 4)
Execute ESATs

((auto))

High Level Security
Acceptance Tests

(HLSATs)

Domain Model

Misuse Case
Model

Security
Robustness
Diagrams

Executable Security
Acceptance Tests (ESATs)

Software Under
Test
(SUT)

Fig. 2 An overview of the proposed methodology

Fig. 3 Usage patterns in misuse

case models

6 Requirements Eng (2016) 21:1–27

123

www.manaraa.com

scenarios in the form of single flows. Here, single flows

mean flows that do not contain alternate branching, but

flows that relate to one usage scenario. This process is

completely automated as discussed later in Sect. 4.

Assuming a faculty search committee (FSC) system that

is used to process faculty employment applications, which

will be used as a running explanatory example throughout

this paper. Figure 4 presents an excerpt of the complete

misuse case diagram. Figure 4 presents an instance of a

usage pattern as shown in Fig. 3.

This misuse case is initiated by a malicious applicant by

providing a username that does not belong to them (unless

the misuser is an insider). The system then displays the list

of active applications. The malicious applicant then pro-

vides the name or ID of a particular application which is

then retrieved and displayed by the ‘‘Application Viewer.’’

The malicious applicant then executes a remove function to

remove that retrieved application. The expected mitigation

behavior is then triggered by the system by adding the

removed application to a list removed applications. The list

contains the removed applications in addition to the users

who executed the remove function. Figure 5 presents a

shortened version of the use and misuse case textual

descriptions. For brevity and simplicity purposes, only the

‘‘basic flow’’ of all misuse and use cases is shown and will

be analyzed in details.

The use and misuse case descriptions are transformed

into mal-activity diagrams [22]. Mal-activity diagrams use

a similar notation to that of UML activity diagrams but

with an extended notation to represent misuse. The trans-

formation process is automated using a model transfor-

mation tool developed in previous work [26] (more details

about automation support in Sect. 5). The mal-activity

diagram generated contains all flows that are embedded in

a given usage pattern. The creation of HLSATs requires

each flow to be considered separately. Therefore, the mal-

activity diagram generated is then dissected into separate

flows. This task is also automated (Sect. 5). The following

Fig. 4 Instance of a usage pattern from the FSC subsystem

Preconditions:
FSC subsystem must be running

Basic Flow:
1. Faculty Search Committee

member enters user name and
password to logon.

2. The system displays all active
applications.

3. The system displays all removed
applications.

4. The Faculty Search Committee
member selects an applicant to in
more detail.

5. The system displays the selected
application in more detail

Basic Flow:

Before Step 1 in Basic
Flow of View Applications
1. Malicious applicant

gains access to a
legitimate user’s
credentials

2. Malicious applicant
enters the user
credentials to logon.

After Step 5 in Basic Flow
of View Applications
3. Malicious application

removes the displayed
application

Basic Flow:

After Step 3 in Basic
Flow of Remove
Application
1. Once an application is

removed the system
stores the application
in a list of removed
applications.

2. Resumes at Step 2 of
Basic Flow of View
Applications

Fig. 5 The textual descriptions

of the involved use and misuse

cases

Requirements Eng (2016) 21:1–27 7

123

www.manaraa.com

is the mal-activity diagram of the usage pattern from the

use and misuse cases shown in Fig. 6, which shows the

single-flow usage scenario that pertains to only the basic

flows of the use case misuse cases.

Question 2: What are the input data or actions that

triggers and perform the usage scenarios?

Upon identifying the usage scenarios from Q1, it is

required to identify the needed inputs, triggers and

preconditions. Inputs and triggers are usually provided

by actors, misusers, use cases, misuse cases or other

systems. The preconditions are used to determine the

requisite system state to establish the proper testing

environment. This essential information can be obtained

by examining the textual descriptions of mis/use cases,

actors, misusers and the domain model. Ideally, the

required information should be available within the

textual descriptions of the mis/use cases; otherwise, the

descriptions are likely incomplete. Input can be provided

throughout the execution of a scenario. Therefore, it is

necessary to perform a step-by-step examination of the

textual descriptions in order to determine what input is

needed and when it should be provided. The required

data inputs should be identified within the classes of the

domain model as attributes. Triggers should be identified

within the classes of the domain model as operations.

The use of Functional Grammar can guide this task.

Functional Grammar is a general theory concerning the

grammatical organization of natural languages [27].

Functional Grammar can be used as a means to

formalize and structure natural language specifications

in use and misuse case descriptions (which at this point

are dissected into various usage scenarios). Once again,

Functional Grammar is used to identify candidates for

the usage scenario inputs. However, caution should be

used when using Functional Grammar as it may yield

many false positives, i.e., nouns that are not inputs, also

some inputs may not be readily identified by tool

support. Therefore, manual analysis of the narrative is

necessary.

Revisiting the running example of the FSC subsystem,

we find that the only precondition is that the FSC subsys-

tem needs to be running. Moreover, we find that the usage

scenario requires a username, password and the ID of the

application to be removed as input as shown in Fig. 7. The

domain model of the FSC subsystem is shown in Fig. 17.

Question 3: What are the expected output values (or

system state) for each usage scenario?

The success criterion of a usage scenario is ideally

evaluated by the output values the system produces or

the system final state. Similar to Q2, output can be

provided throughout the execution of a scenario. There-

fore, it is necessary to perform a step-by-step examina-

tion of the textual descriptions in order to determine

what output is produced and when it will be produced.

Evaluating the system final state is naturally performed

upon the completion of the usage scenario. Similar to

Q2, The output data should be within the classes of the

domain model as attributes. Once again, Functional

Grammar can be used to systematically analyze sen-

tences to detect nouns that can be candidates for outputs.

Once again, Functional Grammar should only be used as

an aid to the user. The user should not be fully reliant on

the tool support for this task, and manual analysis is still

considered necessary.

Revisiting the running example of the FSC system, we

find that the only output of this usage scenario is that an

application is removed and the removed application is then

displayed as shown in Fig. 7.

Completing Q3 above will result in the creation of a

HLSAT. There will a one-to-one correspondence between

each usage scenario and HLSAT. There may be cases

where the above three questions are difficult to answer.

This is usually symptomatic of a low-quality misuse caseFig. 6 Usage scenario of the basic flow of the use and misuse cases

8 Requirements Eng (2016) 21:1–27

123

www.manaraa.com

model. Such misuse case models describe behavior that is

ambiguous, too abstract or incomplete. Performing security

robustness analysis (Phase 2) will attempt to remedy this

problem and improve the quality of the misuse case model.

However, if security robustness analysis fails, then the

misuse case model used is of very low quality and should

be improved beforehand.

For the FSC subsystem, the HLSAT created for the basic

flows of the usage patterns shown in Fig. 4 is presented

below in Table 3.

4.2 Phase 2: Performing security robustness analysis

Security robustness analysis was introduced in earlier work

[28]. Security robustness analysis is an extension to the

robustness analysis technique [29]. Robustness analysis has

a dual purpose: (a) it is used to complete and remove

inconsistencies between the use case and domain models

and making them both more complete, thus making them

more robust, and (b) its outcome is a robustness diagram

which utilizes objects from the domain model required to

realize scenarios described in use cases, thus reducing the

gap between the analysis and design phases. The source of

the objects used is either the domain model or introduced

by the modeler. In case of new objects being introduced

during security robustness analysis, these objects are added

to the domain modeling, making it more detailed.

It is important to note that robustness analysis is not

intended to yield a final design although the robustness

diagrams produced can be refined into a final design if the

design team wishes to do so. The main purpose of

robustness analysis is to brainstorm and explore different

solutions to the problem domain without committing to any

particular design prematurely and becoming overly con-

cerned with design details and conforming to a wide

variety of syntax rules. Therefore, the robustness diagrams

modeling notation is purposely designed to be relatively

very simple. The notational set contains four main con-

structs shown in Table 4. Any two entities can be linked

Fig. 7 Inputs and outputs for

the given usage scenario

Table 3 The HLSAT for the usage scenario involving the ‘‘Remove

Application’’ misuse case

Test ID Description Expected Results

Remove

Application—

Basic Flow

Precondition: Run

FSC subsystem

Output: The selected

application is removed

Input: Username Output: The selected

application is added to the

list of removed

applications displayed

Input: Password

Input: ID of

application to be

removed

Requirements Eng (2016) 21:1–27 9

123

www.manaraa.com

together using a solid line to loosely state that they are

associated.

The robustness analysis technique is only applicable to

regular use cases, and it only models regular business-

related functional behavior. The notational set of robust-

ness diagrams therefore does not support the modeling of

security aspects, such as those described in a misuse case.

To overcome this drawback, security robustness analysis

was introduced as an extension to robustness diagrams

[28]. Security robustness analysis yields security robust-

ness diagrams which introduce two new sets of objects that

share similar notation to robustness diagrams (Table 4).

The first set of objects is used to model the realization of

misuse and threatening behavior as described in a misuse

case (see Table 5 right). This set of objects is colored black

to symbolize their negation property, in-line with misuse

cases. The second set of objects is used to model the

realization of the mitigation behavior as described by a use

case the mitigates a misuse case (see Table 5 left), which

are colored green. This second set of objects was intro-

duced since it is important to make the distinction between

objects representing business-related behavior and objects

that were introduced to mitigate against threats.

An initial step toward creating a security robustness

diagram is to reuse the activities that were previously

derived in the form of single flows (usage scenarios). The

activities in the usage scenarios provide suitable candidates

for control objects. For the FSC subsystem, the control

objects reused are shown in Fig. 8. The control objects

have a one-to-one mapping with the activities present in the

mal-activity diagram shown in Fig. 6.

The security robustness diagram is developed by ana-

lyzing the text of the relevant use and misuse cases. A set

of objects are introduced based on the analysis of the text.

Analysis of the relevant use and misuse cases narrative

should be performed in four phases. For this task, the usage

scenarios derived in the previous phase should be used. In

the first phase, the narrative in the usage scenarios per-

taining to use cases describing the ordinary business rules

is analyzed and the set of regular objects and actors are

created, using the notation shown in Table 3. Given that

the control objects are derived from Phase 2, the focus in

this task is to determine the boundary and entity objects

that will be used by the regular control objects. Preexisting

objects in the domain model should be used to develop this

initial diagram whenever possible. The information present

in the already developed HLSATs should also be used to

guide this task. For the FSC subsystem, it can be deter-

mined that there are two types of legitimate actors that can

access this functionality: (a) the faculty search committee

member and (b) faculty search committee chairman actors.

Therefore, two actor objects are created accordingly. It can

also be determined from the narrative and the domain

model that the ‘‘Application Viewer’’ is the only interface

for the actors. As such, a boundary object is created called

‘‘Application Viewer.’’ In order to process the authentica-

tion, a user credential is identified from the list of users.

Accordingly, two entity objects are created. The first is

called ‘‘Users’’ which represent the list of users, while the

other will be called ‘‘User’’ which contains information

about the active user. It can also be determined that an

application is retrieved from list of applications. Similarly,

two more entity objects are created; the first is called

‘‘Applications List’’ to represent the array of applications,

while the other is called ‘‘Application’’ which represents

the active application. The list of newly created regular

actors, boundary and entity objects is shown in Fig. 9.

In the second phase, the narrative in the usage scenarios

pertaining to misuse cases describing the misuse behavior

is analyzed and a set of misuse objects and misusers are

created (black graphical notation). Relevant misuse cases

Table 4 Robustness diagram objects

Entity Symbol Concept

Actors Similar concept to an actor in use case

diagrams

Boundary Actors communicate with the system using

boundary objects

Entity Similar concept to an entity in a conceptual

model

Control Undertakes logical tasks using boundary and

entity objects

Table 5 Extended notation of security robustness diagrams

Entity Symbol Entity Symbol

Mitigator Misuser

Mitigation boundary Misuse boundary

Mitigation control Misuse control

Mitigation entity Misuse entity

10 Requirements Eng (2016) 21:1–27

123

www.manaraa.com

should be identified from the misuse case diagram. Rele-

vant misuse cases are the ones that have a threatens rela-

tionship directed toward the given use case. When

analyzing the text of the misuse cases, it is important to

determine the points in the functional behavior of the

regular use case where the misuse behavior is expected to

happen. As such, the robustness diagram initially devel-

oped is amended by adding the misuse objects and mis-

users within the flow of the regular objects and actors. At

this point, the robustness diagram only contains objects that

realize the business rules, misuse objects, actors and mis-

users (all graphical entities at this point are either white or

black). For the FSC subsystem, it can be determined that

there is only one misuser role ‘‘Malicious Applicant’’ and a

misuser object is accordingly created with the same name.

The misuser does not use new interfaces and does not

introduce new entity information, and therefore, no new

misuse boundary or entity objects are created. The newly

created misuser is shown in Fig. 10.

In the third phase, the narrative of the mitigating use

cases is analyzed and a set of mitigation objects and actors

are created (green graphical notation). Relevant mitigation

use cases can be identified as the ones that have a mitigates

relationship directed toward misuse cases that have a

threatens relationship directed toward to the original use

case. For the FSC subsystem, mitigation control required

the new creation of a list that stores removed applications.

Therefore, only one mitigation entity object is created and

named ‘‘removed application list’’ as shown in Fig. 11.

The final phase of developing a secure robustness dia-

gram is to create association relationships that together

play-out the behavior described in the usage scenarios. To

perform this task, association relationships are created

according to the logical flow described in the usage sce-

narios. A sanity check should be performed upon creating

the secure robustness diagram to ensure its correctness and

completeness. The sanity check is performed by tracing the

behavior described in the usage scenarios through the

linked objects. For the FSC subsystem, the secure robust-

ness diagram is developed as shown in Fig. 12.

4.3 Phases 3 and 4: Developing and executing

executable security acceptance tests (ESATs)

This final phase leads to the ultimate goal of developing

ESATs. For this phase, developers can use any automated

framework to develop and execute the security acceptance

Fig. 8 Control objects

Fig. 9 Actors, boundary and entity objects

Fig. 10 The misuser
Fig. 11 The mitigation entity

Requirements Eng (2016) 21:1–27 11

123

www.manaraa.com

tests. There exist many tools that provide automation

support for this phase, such as FIT/FITnesse [30] and

Selenium [31]. Although our approach is independent of

any implementation solution, we utilize the FIT/FITnesse

syntax, since it is arguably the most commonly used

framework for developing and executing acceptance tests.

Using the FIT/FITnesse framework requires acceptance

tests to be developed in a tabular form, known as fixtures.

FIT/FITnesse provides three types of fixtures: (a) Action-

Fixture, (b) RowFixture and (c) ColumnFixture. Each fix-

ture type is used to develop different categories of test

cases.

An ActionFixture can be used to develop scenario-based

tests that includes multiple steps. ActionFixtures are

especially useful in transaction-based functionalities where

frequent interactions with a user are expected. The rows in

an ActionFixtures are executed sequentially where each

row (expect the fixture header) is considered an action.

Each row consists of a numbers of fields. The first field of

each row contains one of four commands that indicate the

type of action to be performed. Table 6 provides a brief

explanation of each command. The subsequent fields are

used to include the necessary information to execute the

command. A RowFixture is used to check sets of data. The

header of a RowFixture indicates the name of the data

structure to be evaluated. The remaining rows include the

expected data elements. ColumnFixtures are used for for-

mula evaluations where input is provided to a function and

its output is evaluated. ColumnFixtures are useful to

evaluate functionalities that do not include user interac-

tions. The header of a ColumnFixture contains the name of

Fig. 12 The security robustness

diagram for the ‘‘Remove

Application’’ misuse case

Table 6 Keywords used in ActionFixtures

Command Purpose

Start Starts the given application. It is useful to execute this

command to ensure the initial state of the system

Enter This command is used to create input. The following

field contains the name of input to be entered, which is

followed by another field containing the actual data

value

Press This command is used to execute functions in the given

application. The following field contains the name of

the function to be executed. Note that it is often the

case that a function is executed by performing a GUI

operation, such as a push of a button

Check The purpose of this command is to evaluate whether the

output rendered by the application is the same as the

expected output. The following field contains the name

of the data to be evaluated, which is followed by

another field containing the expected data value

12 Requirements Eng (2016) 21:1–27

123

www.manaraa.com

the function under test. The following row contains headers

of data name columns. Input columns start from the left

and are followed by output columns on the right.

The methodology to develop to ESATs from the security

robustness diagrams is based on the Model–View–Control

(MVC) architecture posed by the security robustness dia-

grams. This means that the behavior of the use and misuse

cases (usage patterns) is realized by a sequence of actions

and hence the corresponding acceptance tests are driven by

action fixtures. As actions are performed in the action

fixtures, a timeline (state) of the usage pattern is pro-

gressing. At certain points the action flows (the timeline),

other tests related to the checking of data lists (row fix-

tures) or calculations (column fixtures) are required. Row

and column fixtures are stateless in the sense that their

execution does not advance the timeline of the usage pat-

tern. Row and column fixtures are hence embedded within

the various action fixtures that progress the timeline of the

usage pattern. Given the underlying (MVC) architecture of

the security robustness diagrams, actions in a usage pattern

start from an interface object, followed by the execution of

one or more control objects. Control objects in turn access

one or more entity objects, before relaying the output back

to one or more interface objects.

Using the running example of the FSC subsystem, an

ESAT is created to realize the corresponding HLSAT

shown in Table 3. For the usage scenario involving the

‘‘remove application’’ misuse case, a number of fixtures are

created as shown in Fig. 13. Table 7 provides a brief

description of the type and purpose of each fixture. As

shown in Fig. 13, the acceptance tests begin with an action

fixture which accesses the only given interface object

ApplicationViewer. Interface objects are accessed to

request a particular functionality to be relayed to a control

object. It is common to provide the necessary parameters to

the interface object also to be related to the control object

to allow the control object to adequately perform its

responsibilities. As shown in Fig. 14, the first action fixture

‘‘Enter’’s various information before ‘‘Press’’ing to display

the active applications. The information entered should be

displayed as entity objects in the security robustness dia-

grams. Meanwhile, the functionality to execute should be

displayed as control objects in the security robustness

diagrams. The function request is then relayed to control

objects before ‘‘Check’’ing the interface object once again

that the applications are shown. At this point in the timeline

of this usage scenario, it is necessary to a data list check;

hence, a row fixture was utilized. The row fixture header

labels the object to be evaluated. In this case, the data

object to be checked is the DisplayedApplications

object. The data object should also be present as an entity

object in the security robustness diagram. It may be the

case that a calculations type of check is required, and in

this case, a column fixture will be utilized. The input and

output data for the column fixtures should be present as

entity objects in the security robustness diagrams.

ApplicationViewer

Enter Users.CurrentUser Username
Enter Users.CurrentUser Password
Press ApplicationViewer.DisplayActiveApplications()

Check ApplicationViewer.isDisplayActiveApplications() True

ApplicationViewer.ApplicationList.DisplayedApplications

Application-1
Application-2
Application-3

ApplicationViewer

Enter ApplicationViewer.CurrentApplication Application-1
Press ApplicationViewer.Remove()

ApplicationViewer.ApplicationList.DisplayedApplications

Application-2
Application-3

ApplicationViewer

Check ApplicationViewer.CurrentApplication Application-2
Press ApplicationViewer.DisplayRemovedApplications()

Check ApplicationViewer.isDisplayRemovedApplications() True

ApplicationViewer.RemovedApplicationList.DisplayedApplications

Application-1 Username

Fig. 13 ESATs for security functionality against improper removal of an application

Requirements Eng (2016) 21:1–27 13

123

www.manaraa.com

Object names in a security robustness diagram are

expected to remain as English words. This naming style is

necessary to allow the modeler to focus on the modeling

exercise whereby a solution is being delivered. It is ideally

expected that the names of the objects will change to

resemble candidate code-level naming. This evolution is

necessary to produce machine-readable tests.

Upon completion of the development, the software

system under test is that tested using the generated ESATs

to verify that the system is performing correctly in case of

misuse.

4.4 Targeted coverage by the developed acceptance

tests

The proposed approach aims to develop acceptance tests

for different usage scenarios based on the usage pattern

shown in Fig. 3. Therefore, the tests developed aims to

achieve activity path coverage [32]. Activity path coverage

is simply Complete path coverage but while observing

Beizer’s loop ‘‘once’’ coverage strategy [33]. This means

that the paths derived start from the initial node to the final

node while covering each loop just once. As of the time of

writing this paper, there has not been any empirical eval-

uation conducted that provides evidence of a better test

coverage criteria for mis/use cases. Therefore, the activity

path coverage was targeted as it was deemed the most

appropriate given the scenario-based characteristic of mis/

use cases.

4.5 Utilization of the acceptance tests

within a development methodology

The proposed approach aims to improve the development

methodologies of secure systems. The acceptance tests

developed pre-development should be used as an effective

medium to validate the desired functional security

requirements. Validation is achieved by eliciting feedback

from the system stakeholders, especially customers,

domain experts and end users. The functional security

requirements are validated by the stakeholders when they

confirm that the behavior exhibited by the system accord-

ing to the acceptance tests is indeed an accurate repre-

sentation of their desired functional requirements. After a

system is developed, the executable security acceptance

tests can be used as a verification mechanism to ensure that

the system does indeed behave as expected in case of

misuse. Figure 14 presents a visual summary of how the

produced acceptance tests should be used within a secure

software engineering development methodology.

5 Tool support

The execution of the ESATs is perhaps the only task that

mandates tool support. However, automation support for

other tasks performed in the proposed technique will be

highly beneficial as it reduces the dependency on the skill

of its user and ensures the accuracy and speed of its

application. This section presents the Automated Secure

Acceptance Testing Framework (ASATF). ASATF is a

collection of tools that collectively provide automation to

many of the tasks required by the proposed technique.

As shown in Fig. 2, the two initial inputs to the process

are a domain model and a misuse case model. These two

models can be developed by anyone of many UML tools.

Tool support is heavily provided in the first phase of the

process where three different tools are used in sequence.

The first tool used is an extension of the tool ARBIUM

(Automated Risk-Based Inspection of Use case Models).

ARBIUM was developed in previous work [21]. The ori-

ginal purpose of this tool is to detect antipatterns in use

case models. In fact, it can detect any type of pattern in use

case models. This tool was extended to support the misuse

Table 7 A description of fixtures used to test against the ‘‘Remove Application’’ misuse case

Fixture

#

Type Purpose

1 Action The purpose of this first fixture is to retrieve the access credentials and to display the list of active applications

2 Row This fixture assumes three applications are present in the system and checks for their existence

3 Action The purpose of this fixture is to select an application and execute a remove operation upon it

4 Row The purpose of this fixture is to check that the removed application is no longer active by checking for the other two

remaining applications

5 Action This fixture presents part of the mitigation behavior where the removed application is added to the ‘‘removed application

list.’’ The fixture checks that the list is displayed

6 Row This fixture presents the other part of the mitigation behavior by checking the contents of the ‘‘removed application list.’’ The

fixture checks that the list contains the removed application as well as the user who executed the remove operation. The

fixture assumes that there was no other previously removed application

14 Requirements Eng (2016) 21:1–27

123

www.manaraa.com

case modeling notation and be able to detect the usage

patterns (Fig. 3). The extended tool was named Ex-

ARBIUM.

The tool presented in [26] uses the concept of model

transformation to convert mis/use case descriptions into

mal-activity diagrams [22]. Mal-activity diagrams are

similar to UML activity diagrams but with an extended

notation to model mal-activities (the inverse of activities)

and misusers (the inverse of actors). The mal-activity

diagrams are then used as input to the activity path gen-

erator (APG). APG is a direct implementation to the

activity path generator algorithm presented by [32]. The

outcome of APG is a set of single flows (usage scenarios)

pertaining to each usage pattern previously detected by the

tool Ex-ARBIUM. Given the single flows, they are ana-

lyzed carefully to determine the necessary inputs and out-

puts to actuate each usage scenario and complete the

creation of the HLSATs. This final task of phase 1 requires

analysis of the textual information, which needs to be

performed manually; however, it can be guided using

Functional Grammar theory as mentioned previously in

Sect. 4.1. A tool named Essential Interactions Parser (EIP)

was implemented based on the theory of Functional

Grammar. EIP parses the textual descriptions to detect

essential actions that can be candidates for control objects

and nouns that can be candidates for inputs and outputs.

Phase 2 is concerned with performing security robust-

ness analysis and developing security robustness diagrams.

The secure robustness diagrams notation is also supported

by many UML tools. Since the security robustness dia-

grams are based on the usage scenarios, which are

embedded in the mal-activity diagrams generated by the

model transformation tool of [26], the mal-activity dia-

grams were used to automatically generate a security

robustness diagram containing control objects only. The

control objects have the appropriate coloring. Note that in

order to achieve the appropriate coloring for mitigation

control objects (green), the model transformation tool by

[26] was extended since the original notation of mal-

activity diagrams by [22] did not support mitigation

activities. At this point, the security robustness diagram

contains only control objects and is missing boundary and

entity objects. As mentioned in Sect. 4.2, the addition of

the missing boundary and entity objects is guided by the

HLSATs and the objects available in the domain model.

The addition of the boundary and entity objects is a manual

activity.

In phase 3, the tool MUCAT (Misuse Use Case

Acceptance Tester) is used to allow modelers to write and

associate acceptance tests to their corresponding use/mis-

use cases. MUCAST also provides testers with the ability

to reuse their tests. MUCAT is also an extension of the tool

UCAT (Use Case Acceptance Tester) which was developed

in previous work [21]. MUCAT interfaces with the Fit/

Fitnesse framework to execute the security acceptance tests

once development is completed. MUCAT yields the results

of the tests in HTML form. It should be noted that the tool

does not automatically create ESATs. Creating ESATs is a

manual process that is explained in detail in Sect. 4.3.

6 The faculty search committee subsystem case study

This section presents the faculty search committee (FSC)

subsystem case study to demonstrate how the proposed

approach can be used to produce security acceptance tests

using a misuse case model and its robustness diagrams. The

FSC subsystem is currently being developed by profes-

sional developers at the IT department of King Fahd Uni-

versity of Petroleum and Minerals, Dhahran, Saudi Arabia.

Fig. 14 Utilization of the acceptance tests

Requirements Eng (2016) 21:1–27 15

123

www.manaraa.com

The purpose of the system is to facilitate the processes of

receiving and reviewing applications for faculty position

openings. The FSC subsystem is part of a much larger

system that automates many other internal processes used

by faculty members. In total, the system includes seven

subsystems. The approach proposed in this paper was

applied and validated using all subsystems. Demonstration

of the feasibility and application of the proposed approach

on the entire system will be very space consuming.

Therefore, validation of the proposed approach will be

demonstrated via the FSC subsystem only. A brief

description of the other six subsystems is shown in Table 8.

The term ‘‘Entity’’ in Table 8 refers to any use case, misuse

case, actor or misuser, while the term relationship refers to

any relationship type such as the include, extend, gener-

alize, mitigate and threatens relationships.

In general, the users of the FSC subsystem include any

faculty member of various departments. However, the

faculty search committee members are expected to be the

most involved users with the system. The use cases of the

system were derived by the development team and in

consultation with the faculty search committee. The faculty

search committee consists of three members (faculty

members) in addition to a chairman. It should be noted that

the chairman of the faculty search committee is the author

of this paper. The development team would apply the

proposed technique to develop security acceptance tests in

collaboration with the committee members. The committee

members, as experts in the problem domain, would use the

security acceptance tests to validate the intended security

behavior of the system.

The underlying workflow for the review process begins

with the department secretary scanning and uploading

hardcopies of applications onto the system. The system

tags the application with an ID and sends notifications to

the committee members. The three committee members

then independently review the application and render their

recommendation. Only after the three members submit

their review, the system notifies the committee chairman to

review the application and also study the input from the

committee members. The chairman then renders his deci-

sion based on his independent review of the application and

the input from the other members. The chairman’s decision

is treated as the committee’s decision. The decision is then

forwarded to the department chairman for perusal.

The system offers some features (use cases) to facilitate

the underlying workflow. The most basic feature is the

ability of its users to view and review applications. The

system allows its users to change their rendered decision

or review of an application. The system also allows its

users to redirect an application to another faculty member

if deemed necessary. Based on the initial set of use cases,

misuse cases were accordingly identified and the use case

model evolved into a misuse case model. Misuse cases

include improper change of decision or a review, improper

removal of an application and improper redirection of an

application to another department. Consequently, a new

set of use cases were added to the misuse case model to

fend against misuse of the system. The final misuse case

model of the system is shown in Fig. 15. The misuse case

model for the FSC subsystem contains 2 actors, 1 misuser,

6 use cases and 3 misuse cases. A brief description of

Table 8 A brief descriptions of the other six subsystems

Subsystem Description Size of misuse

case diagram

Involved users

Graduate

applications

Subsystem is used to collect applications for graduate studies. The

subsystem helps automate the review process

10

entities ? 17

relationships

Externals and internal

students ? faculty ? administration

Student

petitions

This subsystem is used mainly by students to submit petitions for

various reasons

5 entities ? 11

relationships

Internals

students ? faculty ? administration

Teaching

scheduling

Subsystem is used to collect faculty preferences with respect to

teaching and automate the scheduling process while observing the

University rules and regulations

10

entities ? 16

relationships

Faculty

Faculty

promotion

This subsystem is used by faculty members who are eligible to apply

for promotion. The system collects the relevant material from the

applicant and allows an anonymous committee to process the

promotion application

8 entities ? 13

relationships

Faculty ? administration

Conference

attendance

This subsystem is used by faculty members to apply for conference

attendance. Conference attendance at the host University must be

approved by the Deanship of Scientific Research

4 Entities ? 10

relationships

Faculty ? administration

Maintenance

requests

This subsystem can be used by all University staff and students to

request various types of maintenance work to be performed

12

Entities ? 20

relationships

Students ? faculty ? administration

staff ? maintenance staff

16 Requirements Eng (2016) 21:1–27

123

www.manaraa.com

each element in the model is provided in Table 9. The

preliminary domain model of the FSC subsystem is pre-

sented in Fig. 16. The domain model is built through a

brainstorming process. Table 10 provides a brief descrip-

tion of the classes contained in the preliminary domain

model. Recall that the FSC subsystem is only a one

component of the larger system that was developed to

support faculty activities. As such, the misuse case model

shown in Fig. 15 is only an excerpt of the much larger

misuse case model that was built for the entire system.

Similarly, the preliminary domain model developed for

the entire system contains many more classes that those

shown in Fig. 16.

The following subsections will demonstrate the appli-

cation of the proposed technique to develop security

acceptances tests based on the developed use/misuse cases.

The aim of applying the proposed technique is to create a

set of executable security acceptance tests that will cover

misusage scenarios described by the three misuse cases.

The following is an outline of the analysis performed to

produce security acceptance testing for this case study:

• Section 6.1: The behavior of the ‘‘Change Review

Decision Illegally’’ misuse case and its associated use

cases is presented. This behavior is analyzed in the

proceeding subsections.

Fig. 15 Misuse case model of the FSC subsystem

Requirements Eng (2016) 21:1–27 17

123

www.manaraa.com

• (Phase 1) A set of HLSATs are created to simulate

the misusage behavior and test the mitigation

behavior.

• (Phase 2) Security robustness analysis is performed

and a corresponding security robustness diagram is

created. Security robustness analysis identifies

classes that correspond to the inputs and outputs

stated in the HLSATs.

• (Phase 3) The identified classes are used to create

ESATs to implement the HLSATs.

• Section 6.2 follows a similar structure to that of Sect.

6.1 to analyze misuse case ‘‘Redirect Review

Illegally’’.

6.1 Change review or decision illegally: misuse case

This misuse case is initiated by the malicious applicant

by providing a username that does not belong to them

(unless the misuser is an insider). The system then

provides the list of active application. The malicious

applicant enters the name or ID of an application and the

system retrieves it. The malicious applicant then changes

decision or review previously rendered by a faculty

search committee member. The expected mitigation

behavior is then triggered by the system by emailing the

committee chairman with details of the change. The

chairman can then verify the change and either approve

Table 9 Properties of the FSC subsystem misuse case model

Element Purpose

Actors

Faculty search committee member A faculty search committee member is a licit user of the system. A faculty search member uses the

system to mainly review applications and render decisions. A faculty search committee member may

also redirect an application to another faculty member if deemed appropriate

Faculty search committee chairman The faculty search committee chairman is a special type of faculty search committee member. He has

additional privileges in comparison with regular faculty search committee members. The chairman

can review changes in an application decision and requests for application redirects. The chairman

has the power to cancel any changes if deemed appropriate

Misusers

Malicious applicant This is the sole misuser. A malicious applicant is a person who attempts to misuse the system to gain

an unfair advantage for the application review process of a particular applicant. This can be done by

redirecting application reviews, changing decisions and removing competing applications

Use cases

View applications This use case describes the necessary behavior to view all active applications

Review application This use case is an extension to the ‘‘View Applications’’ use case. It describes the behavior of an

application being reviewed by a faculty search committee member which culminates with a

rendering of a decision

Redirect review This use case is also an extension of the ‘‘View Applications’’ use case. It describes the behavior of an

application being redirected by a faculty search committee member. Redirection requires the

nomination of another faculty member to conduct the review

Send email of review or decision

change to chairman

This is a mitigation use case whose purpose is to notify the chairman of any decision or review

changes with respect to a particular application. This use case mitigates against the threat of illegally

changing the decision or review of a particular application

Create list of removed applications This is a mitigation use case whose purpose is to display the list of removed application. This use case

mitigates against the threat of unfairly removing a competitive application

Send email of redirect to chairman This is a mitigation use case whose purpose is to notify the chairman of an application review redirect.

This use case mitigates against the threat of bias selection of an application referee

Misuse cases

Change review or decision illegally This misuse case describes the behavior initiated by a malicious application to illegally change the

review or decision of a particular application

Remove application This misuse case describes the behavior initiated by a malicious application to unfairly remove a

competitive application

Redirect review illegally This misuse case describes the behavior initiated by a malicious application to illegally redirect an

application to a faculty member whom more likely to conduct a favorable review

18 Requirements Eng (2016) 21:1–27

123

www.manaraa.com

or disapprove it. The HLSAT shown in Table 11 was

derived based on the behavior of the involved mis/use

cases (Phase 1). The corresponding security robustness

diagram developed is shown in Fig. 17 (Phase 2).

Finally, the ESATs developed are shown in Fig. 18

(Phase 3). The ESATs shown below consists of four

fixtures. Table 12 provides a brief description of the type

and purpose of each fixture.

6.2 Redirect review illegally: misuse case

This misuse case is initiated by the malicious applicant by

providing a username that does not belong to them (unless

the misuser is an insider). The system then provides the list

of active application. The malicious applicant enters the

name or ID of an application and the system retrieves it.

The malicious applicant provides the name of a new

reviewer to review the application. The application is

assigned a ‘‘redirected’’ status. The expected mitigation

behavior is then triggered by the system by emailing the

committee chairman with details of the redirection. The

chairman can then verify the change and either approve or

disapprove it. The HLSAT shown in Table 13 was derived

based on the behavior of the involved mis/use cases (Phase

1). The corresponding security robustness diagram devel-

oped is shown in Fig. 19 (Phase 2). Finally, the EASTs

developed are shown in Fig. 20 (Phase 3). The ESAT

shown below consists of four fixtures. Table 14 provides a

brief description of the type and purpose of each fixture.

6.3 Validation

Validation of the proposed is achieved on two fronts.

Firstly, validation is achieved by determining how well the

Fig. 16 The initial domain model of the system

Table 10 A brief explanation of the domain models classes

Class Purpose

Application

Viewer

This is the main interface to the system

Applicant List Contains the list of all applications including

removed applications

Removed

Application List

Contains a list of applications that have been

removed

Application An application for employment by an applicant

Users Registered user list containing faculty members

User A particular registered user of the system

Current User The current logged user in the system

Current

Application

A current application retrieved from the

application list for viewing

Requirements Eng (2016) 21:1–27 19

123

www.manaraa.com

tests created cover the behavior described in the use and

misuse cases (as mentioned in Sect. 4.4). Secondly, vali-

dation is achieved by eliciting feedback from the stake-

holders of the system, especially the customers whom most

of them are also end users. The proposed approach is

validated if the feedback received indicates that the out-

lined behavior of the system in terms of acceptance tests is

indeed an accurate representation of their security

requirements.

On the first front, validation is concerned with the

coverage of the misuse behavior according to the usage

patterns as presented previously in Fig. 3. Recall that the

coverage strategy that was selected for our approach is the

activity path coverage as mentioned previously in Sect. 4.4.

For the FSC subsystem, the following usage patterns were

covered (Table 15). As shown in Table 15, the usage pat-

terns covered by the proposed approach encompass the

entire misuse case model (business use cases, misuse cases

Table 11 The HLSAT for the ‘‘Change Review or Decision Illegally’’ misuse case

Test ID Description Expected results

Remove Application—Basic

Flow

Precondition: Run FSC subsystem Output: The selected application has its review decision changed

Input: Username Output: The selected application has its status changed

Input: Password Output: An e-mail sent to the committee members with the details of the

change

Input: ID of application to be

changed

Output: The selected application has its status reverted

Input: New status Postcondition: Current Status = Old Status

Input: Chairman username

Input: Old status

Fig. 17 The security robustness diagram for the ‘‘Change Review or Decision Illegally’’ misuse case

20 Requirements Eng (2016) 21:1–27

123

www.manaraa.com

and mitigation use cases). The tests produced achieved

100 % activity path coverage for FSC subsystem. The tests

produced for the remaining six subsystems also achieved

100 % coverage. The 100 % coverage is expected since the

proposed approach is based on transforming the use/misuse

case descriptions into mal-activity diagrams and then dis-

secting the mal-activity diagrams into single flows.

Upon applying the proposed approach to the entire

system, a questionnaire was used to elicit feedback from

the system stakeholders. The questionnaire was designed to

evaluate the coverage of the tests produced for the usage

patterns. The questionnaire also acts as a validation and

verification mechanism of the security requirements. The

questionnaire was given to all stakeholders of the system.

ApplicationViewer

Enter Users.CurrentUser Username
Enter Users.CurrentUser Password
Press ApplicationViewer.DisplayActiveApplications()

Check ApplicationViewer.isDisplayActiveApplications() True

ApplicationViewer.ApplicationList.DisplayedApplications

Application-1
Application-2
Application-3

ApplicationViewer

Enter ApplicationViewer.CurrentApplication

Press ApplicationViewer.Review()

Press ApplicationViewer.Recommend()

Check Application.Status Recommended

Check Application.isDecisionChanged False

Press ApplicationViewer.Review()

Press ApplicationViewer.Reject()

Check Application.Status Rejected

Check Application.isDecisionChanged True

Press Application.addChangeToHistory()

ApplicationViewer

Enter Users.CurrentUser Committee Member-1
Enter Users.CurrentUser Committee Member-2
Enter Users.CurrentUser Committee Member-3
Enter Users.CurrentUser Committee Chairman
Press ApplicationViewer.SendChangeDecisionEmail()

Press ApplicationViewer.RejectChange()

Check Application.Status Recommended

Fig. 18 ESATs for security functionality against improper overturn of a decision on an application

Table 12 Descriptions of the fixtures used to test against the ‘‘Change Review or Decision Illegally’’ misuse case

Fixture

#

Type Purpose

1 Action The purpose of this first fixture is to retrieve the access credentials and to display the list of active applications. This fixture

assumes three applications are present in the system

2 Row This fixture assumes three applications are present in the system and checks for their existence

3 Action This fixture begins with selecting an application for review. The application is then recommended. The fixture then executes

another review where this time the decision has changed from a ‘‘recommend’’ to a ‘‘reject’’

4 Action This fixture presents the mitigation behavior. The four members of the committee and its chairman are notified with the

decision change via e-mail. The fixture executes a change reject by the chairman and checks that the application’s decision

has not changed

Requirements Eng (2016) 21:1–27 21

123

www.manaraa.com

This includes the potential end users as indicated in

Table 8 and the development team. Questions Q1–Q6

shown below were designed to elicit data about the users’

perceived functional efficacy and correctness of the

proposed technique. The questionnaire contained closed-

ended and open-ended questions. The closed-ended ques-

tions were designed to elicit quantitative data about the

respondent’s perceptions of the tests for activity path

Table 13 The HLSAT for the ‘‘Redirect Review Illegally’’ misuse case

Test ID Description Expected Results

Remove Application—Basic

Flow

Precondition: Run FSC subsystem Output: The selected application has its review decision changed

Input: Username Output: The selected application has its reviewer changed

Input: Password Output: An e-mail sent to the committee chairman with the details of the

redirect

Input: ID of application to be

redirected

Output: The selected application has its reviewer change reverted

Input: New status Postcondition: Current Reviewer = Original Reviewer

Input: Chairman username

Input: Original reviewer

Fig. 19 The security robustness diagram for the ‘‘Redirect Review Illegally’’ misuse case

22 Requirements Eng (2016) 21:1–27

123

www.manaraa.com

coverage (Q1–Q3) as well as its clarity of describing the

exact behavior of the system under various conditions (Q4–

Q6). The open-ended questions were used to elicit quali-

tative data to validate and explain the various phenomena

observed in the responses to the closed-ended questions.

Questions Q1–Q6 are as follows:

Q1 Did the tests fully cover the various usage scenarios

of the system?

Q2 Did the tests fully cover the various misuse scenarios

of the system?

Q3 Did the tests fully cover the various defensive

countermeasures?

Q4 Did the tests clearly explain how the system will be

behaved when it is used?

Q5 Did the tests clearly explain what happens in case of

misuse?

ApplicationViewer

Enter Users.CurrentUser Username
Enter Users.CurrentUser Password
Press ApplicationViewer.DisplayActiveApplications()

Check ApplicationViewer.isDisplayActiveApplications() True

ApplicationViewer.ApplicationList.DisplayedApplications

Application-1
Application-2
Application-3

ApplicationViewer

Enter ApplicationViewer.CurrentApplication

Enter Users.NewReviewer New Reviewer
Press ApplicationViewer.Redirect()

Check Application.Status Redirected

Check Application.isDecisionChanged False

Press Application.addChangeToHistory()

ApplicationViewer

Enter Users.CurrentUser Committee Chairman
Press ApplicationViewer.SendRedirectEmail()

Press ApplicationViewer.rejectChange()

Check Application.Reviewer Original Reviewer

Fig. 20 ESATs for security functionality against improper redirect of an application

Table 14 A description of fixtures used to test against the ‘‘Redirect Review Illegally’’ misuse case

Fixture

#

Type Purpose

1 Action The purpose of this first fixture is to retrieve the access credentials and to display the list of active applications. This fixture

assumes three applications are present in the system

2 Row This fixture assumes three applications are present in the system and checks for their existence

3 Action Misuse behavior is simulated by this fixture by assigning a new review to the application before executing a redirect operation

4 Action This fixture presents the mitigation behavior as the chairman committee is informed of the reviewer assignment change via

e-mail. It simulates the chairman rejecting the change then checks that the current reviewer of the application remains as the

original reviewer

Table 15 Usage patterns covered from the FSC subsystem misuse case model

Pattern Original use case Threatening misuse case Mitigation use case

1 View applications Remove application Create list of removed applications

2 Review application Change review or decision illegally Send e-mail of review or decision change to chairman

3 Redirect review Redirect review illegally Send e-mail of redirect to chairman

Requirements Eng (2016) 21:1–27 23

123

www.manaraa.com

Q6 Did the tests clearly explain how the system will be

behaved in response to misuse?

Questions Q1–Q6 focus on the perceived functional

correctness of the proposed technique by its users. These

questions were created by the authors of the paper and not

adapted from other questionnaires. The reason being that

these questions are custom made to evaluate the specific

functional goals of the proposed technique, which is not

assumed to be readily available by other evaluation tools in

the literature. The results shown are from correspondents

whom were involved as participants in the development

process for all seven subsystems. In total, we have received

34 complete responses shown in Fig. 21 based on a five-

level Likert scale. The first author of this paper, whom was

involved in the development project, did not partake in the

questionnaire survey.

The results indicate that the majority of the stakeholders

find that the behavior prescribed by the acceptance tests do

indeed resemble the desired functional security require-

ments (Q1–Q3). The results also indicate that the majority

of the stakeholders also find that the tests provide a clear

explanation as to how the system will exactly behave in

each usage scenario (Q4–Q6). However, there were some

respondents whom expressed that the tests were inadequate

or they were undecided about their efficacy. We examined

the responses to the qualitative questions to shed further

light into this issue. The responses to the qualitative

questions reveal that the uncertainty felt by the respondents

were mainly due the fact that acceptance tests created did

not include more examples of stringier validation of the

functional security requirements. This, however, does not

negate the fact that current test suites provide full activity

path coverage.

The questionnaire also contained questions to elicit data

regarding cognitive dimensions of the proposed technique.

The cognitive dimensions study will provide additional

insight into the perceived usability of the proposed tech-

nique by its users. The questions have been adapted from

[34]. The cognitive dimensions evaluated are described

below:

• Visibility Is it easy to see the behavior representing the

use and misuse cases?

• Viscosity Is it easy to make changes?

• Diffuseness The notation is precise and space-economic

• Hard mental effort Does it require hard mental effort to

do?

• Error proneness It is easy to make mistakes or errors

• Hidden dependencies Are dependencies visible?

• Progressive evaluation Is it easy to stop and check my

work so far?

• Premature commitment Is it easy to work in any order I

like when using the approach?

The results of the cognitive dimensions are shown in

Table 16 based on a five-level Likert scale. The question-

naire also contained open-ended qualitative questions to

allow us to explore in more detail the results shown in

Fig. 21 and Table 16. The visibility, viscosity and diffuse-

ness questions scored highly in favor of the proposed

technique, which explains the favorable evaluation results

it received with respect to its functional effectiveness (as

shown in Fig. 21 for Q1–Q6). The hard mental effort

question received lesser scores as the participants have

indicated that applying the technique requires some degree

of skill on part of its users, in particular, developing the

necessary models and progressing from one phase to the

next. The result for the error proneness question is in line

with the hard mental effort question. Naturally, if a tech-

nique requires some degree of skill to apply effectively,

then some degree of error proneness will exist. For the

hidden dependencies question, the participants indicated

that a traceability framework should be in place to better

link artifacts to their sources. The result for the progressive

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Strong
Agree

Agree Neutral Disagree Strongly
Disagree

Q1

Q2

Q3

Q4

Q5

Q6

Fig. 21 The results to questions Q1–Q6

Table 16 The results of the cognitive dimensions questions

Cognitive

dimension

Strongly

agree

(%)

Agree

(%)

Neutral

(%)

Disagree

(%)

Strongly

disagree

(%)

Visibility 91.18 8.82 0.00 0.00 0.00

Viscosity 88.24 8.82 2.94 0.00 0.00

Diffuseness 97.06 2.94 0.00 0.00 0.00

Hard mental

effort

5.88 14.71 14.71 55.88 8.82

Error Proneness 11.76 8.82 26.47 44.12 8.82

Hidden

dependencies

23.53 58.82 8.82 8.82 0.00

Progressive

evaluation

47.06 47.06 5.88 0.00 0.00

Premature

commitment

0.00 0.00 0.00 2.94 97.06

24 Requirements Eng (2016) 21:1–27

123

www.manaraa.com

evaluation question clearly indicates that the users of the

technique had no trouble monitoring their work. Finally,

the result for the premature commitment question was

rather expected. The proposed technique mandates a cer-

tain order of which tasks should be performed. This leaves

users with room to change the order of their work only

within tasks and not between tasks.

6.4 Threats to validity

This section presents the threats to the validity of the study

in accordance with the standard classification [35].

6.4.1 Conclusion validity

A main conclusion threat to validity in this case study is

that it represents only one sample, not enough to draw a

strong empirically proven conclusion. While the case study

deals with many personnel and many subsystems, a proper

empirical evaluation would be necessary to provide the

ultimate confidence that the treatment applied (the pro-

posed approach) is responsible for the outcome (the success

of the project). This lack of empirical evidence leads in

turn to a number of external threats to validity (discussed in

Sect. 6.4.4). We have listed a number of useful empirical

evaluations that can better validate certain aspects that

cannot be validated by the case study. The empirical

evaluations we suggested are discussed in the last para-

graph of Sect. 7.

Another conclusion threat to validity relates to the five-

scale Likert scale used in the usability study. There is

always a possibility that the participants did not score the

different questions accurately due to misunderstanding of

the questions or misunderstanding of the criteria to choose

a particular answer. To mitigate against these threats, the

participants were given an explanation of the various

questions as well as an explanation to the various criteria.

6.4.2 Internal validity

The forefront internal threat to validity is the involvement

of one of the authors of this paper in the development

project. Although the author did not partake in the ques-

tionnaire component of the evaluation, the author’s

involvement, given his familiarity with the technique must

have surely improved the correctness of its application.

However, the author was only involved in the development

of one of the seven subsystems, the FSC subsystem. The

author only provided some training to the development

team whom applied the technique to the remaining six

subsystems without any direct supervision from the author.

The evaluation results shown in this case study are for the

entire set of seven subsystems, and therefore, the author’s

involvement in the development of one subsystem is not

believed to have significantly skewed the results of the

evaluation.

Another threat to validity is the quality level of the

misuse case models used. The proposed technique requires

a misuse case model to be developed, but it does not guide

the development of high-quality misuse case models. The

misuse case models used in the case were of high quality.

However, if the misuse case models used are low quality, it

is expected that the success of the technique will be sig-

nificantly reduced.

6.4.3 Construct validity

As indicated by the usability evaluation results, the success

of the proposed technique is highly dependent on the skill

of the person applying it. This is, however, the case for

almost all requirements engineering approaches, and the

proposed approach is no exception. We firmly believe,

however, that with sufficient training and without a steep

learning curve, requirements engineers will be able to

apply the technique effectively.

Another construct validity stems from the fact that the

software engineers applying the proposed approach are

professionals. It is common the professionals divert from

the prescribed instructions and resort to their prior expe-

rience. To mitigate this threat, the authors have closely

reviewed their outcomes to ensure that they have following

the prescribed instructions.

Although the participants of the case study were not

informed that the authors of this paper are the inventors of

the methodology used, it is safe to assume that the par-

ticipants had inferred this fact on their own. This may lead

to bias and influence the results obtained in the user study.

In order to mitigate this threat, the participants were

informed (verbally) that there is no right or wrong answers

and that they should only be answering the questions based

on their true perceptions.

6.4.4 External validity

It is often the case that the size of systems considered in

research case study is smaller than artifacts used in full-

scale industrial settings which reduces the confidence in

generalizing the results to industry. We believe our meth-

odology can scale-up to larger and more complex systems.

However, an empirical evaluation is certainly needed to

prove this conjuncture.

Another threat to validity posed by this case study is the

familiarity of its domain to the general public. The aca-

demic domain is well known, and its inner workings cannot

be considered to be of extreme sophistication. It is

expected that the success of the technique will be reduced

Requirements Eng (2016) 21:1–27 25

123

www.manaraa.com

if it is applied to an unfamiliar domain or by a person who

is unfamiliar with the given domain. The skill level of the

participants in this case study is an inherent external threat

to validity. This is due to the fact that it is not safe to

assume that all other development groups in industry will

have the same skill level as the participants of this case

study. Other development groups may have higher or lower

skill levels, which in turn will affect the effectiveness of

the application the proposed approach.

The misuse case models used in this case study were

created in cooperation with one of the authors of this paper

who has a decade of use case and misuse case modeling

research expertise. Hence, the misuse case models used as

input to the methodology are of high quality. Misuse case

models used in industrial settings are likely not to be of the

high standard used in this case study. Following the gar-

bage-in–garbage-out rule of computer science, the success

level observed in this case study may not be observed in

other projects.

7 Conclusion and future work

In the paper, we presented an approach to develop accep-

tance tests for early-stage validation of functional security

requirements. The proposed approach makes use of arti-

facts that are developed at an early stage in the develop-

ment life cycle, namely the domain model and misuse case

model. The approach applies the security robustness ana-

lysis technique on the given domain model and misuse case

models. The developed acceptance tests are executable and

reusable. The acceptance tests are produced in a systematic

manner to be much more comprehensive in comparison

with an ad hoc approach to acceptance tests creation. The

feasibility of the proposed approach was demonstrated

using real-world system—the FSC subsystem used by

various departments at King Fahd University of Petroleum

and Minerals, Dhahran, Saudi Arabia.

Tests are first created at high level to serve a dual pur-

pose. Firstly, HLSATs are the basis for creating ESATs.

Secondly, HLSATs provide a technically simple means for

early validation of the security requirements, which

encourages more involvement by customers. HLSATs can

be developed at the early stages of the development life

cycle without the need to wait for object-level information

to become available.

Misuse case models adhere to a relatively small set of

syntax rules. The core component of misuse case models is

their unstructured textual descriptions. It is naturally very

difficult to devise fully automated approaches that require

the analysis of unstructured natural language. Therefore,

human judgment is required during the application of the

proposed approach. In particular, human judgment is

required to analyze the textual descriptions in order to

decompose the stated behavior into steps, which is a req-

uisite step to determine the usage scenarios, needed inputs

and expected outputs. Naturally, processes that require

human judgment are subjective. The approach is also

dependent on the quality of the given misuse case and

domain models. Therefore, the success of the proposed

approach is dependent on the skill level of the analysts

applying it and the quality of the given models. The issue

with the reliance on human judgment can be remedied by

prescribing the use of structured misuse case descriptions,

such as the SMCD (Structured Misuse Case Descriptions)

structure developed in earlier work [36]. SMCD structured

misuse case descriptions will greatly reduce the subjec-

tivity issue. Moreover, the use of the SMCD, which was

specifically designed to reduce inconsistencies in misuse

case descriptions, will ensure a certain level of quality

better than that in unstructured descriptions. Therefore,

future work can be directed toward modifying and

improving the current approach by set it to leverage the

SMCD structure.

A number of empirical studies can be performed to

investigate possible generalization of the results that could

not be supported from the current case study. For example,

an empirical study can be performed using participants with

varying experience and skill levels. Another empirical study

can be performed using misuse case models of varying

quality levels. It will also be interesting to perform other

case studies where the authors are not involved in order to

eliminate any potential for bias. Finally, an empirical

evaluation can be useful to investigate the effect of using

misuse case models representing uncommon domains.

Acknowledgments The authors would like to acknowledge the

support provided by the Deanship of Scientific Research (DSR) at

King Fahd University of Petroleum and Minerals (KFUPM) for

funding this work through project No. IN111028.

References

1. Jürjens J, Juerjens J (2005) Secure systems development with

UML. Springer, Berlin

2. Sauvé JP, Abath Neto OL, Cirne W (2006) Easyaccept: a tool to

easily create, run and drive development with automated accep-

tance tests. In: Proceedings on 2006 international workshop

automation and software testing ACM, pp 111–117

3. Mantei MM, Teorey TJ (1988) Cost/benefit analysis for incor-

porating human factors in the software lifecycle. Commun ACM

31:428–439

4. Cohn M (2004) User stories applied: for agile software devel-

opment. Addison-Wesley Professional, Reading

5. Sindre G, Opdahl AL (2005) Eliciting security requirements with

misuse cases. Requir Eng 10:34–44

6. Alexander I (2002) Initial industrial experience of misuse cases in

trade-off analysis. In: Requirement Engineering 2002—proceed-

ings on IEEE joint international conference, pp 61–68

26 Requirements Eng (2016) 21:1–27

123

www.manaraa.com

7. Den Braber F, Dimitrakos T, Gran BA et al (2002) Model-based

risk management using UML and UP. Issues Trends Inf Technol

Manag Contemp Organ

8. Houmb SH, Den Braber F, Lund MS, Stølen K (2002) Towards a

UML profile for model-based risk assessment. In: Critical system

development with UML—proceedings UML’02 workshop.

Citeseer, pp 79–91

9. Karpati P, Redda Y, Opdahl AL, Sindre G (2014) Comparing

attack trees and misuse cases in an industrial setting. Inf Softw

Technol 56:294–308. doi:10.1016/j.infsof.2013.10.004

10. Raspotnig C, Opdahl A (2013) Comparing risk identification

techniques for safety and security requirements. J Syst Softw

86:1124–1151

11. Sindre G, Opdahl AL, Brevik GF (2002) Generalization/specia-

lization as a structuring mechanism for misuse cases. Proc. 2nd

symposium on requirements engineering: information security

SREIS’02, Raleigh, North Carol

12. Sindre G, Opdahl AL (2001) Templates for misuse case

description. In: Proceedings of 7th international workshop on

requirements engineering: foundation for software quality.

REFSQ2001 Switz

13. Kroll P, Kruchten P (2003) The rational unified process made

easy: a practitioner’s guide to the RUP. Addison-Wesley Pro-

fessional, Reading

14. Kulak D, Guiney E (2000) Use cases: requirements in context.

Addison-Wesley, Reading

15. Basanieri F, Bertolino A, Marchetti E (2002) The cow_suite

approach to planning and deriving test suites in UML pro-

jects. � UML � 2002—unified modeling language. Springer,

Berlin, pp 383–397

16. Briand L, Labiche Y (2002) A UML-based approach to system

testing. Softw Syst Model 1:10–42

17. Nebut C, Fleurey F, Le Traon Y, Jezequel J-M (2006) Automatic

test generation: a use case driven approach. Softw Eng IEEE

Trans 32:140–155

18. Ryser J, Glinz M (1999) A scenario-based approach to validating

and testing software systems using statecharts. In: Proceedings

12th international conference on software, systems engineering

and their application.

19. International Institute of Business Analysts: Business Analysts

Body of Knowledge. www.iiba.org/babok-guide.aspx. Version

2.0. Last accessed March 2014

20. El-Attar M, Elish MO, Mahmood S, Miller J (2012) Is in-depth

object-oriented knowledge necessary to develop quality robust-

ness diagrams? J. Softw 7(11):2538–2552

21. El-Attar M, Miller J (2010) Developing comprehensive accep-

tance tests from use cases and robustness diagrams. Requir Eng

15:285–306

22. Sindre G (2007) Mal-activity diagrams for capturing attacks on

business processes. Requirements engineering: foundation for

software quality. Springer, Berlin, pp 355–366

23. Kariyuki, S. et al (2011) Acceptance testing based on relation-

ships among use cases. In: Proceedings of 5th world congress for

software quality, 2011.

24. Stephens M, Rosenberg D (2010) Design Driven Testing: Test

Smarter, Not Harder. Apress

25. Roubtsov S (2006) Use case-based acceptance testing of a large

industrial system: approach and experience report. In: Proceed-

ings of testing: academic and industrial conference—practice and

research techniques, 2006

26. El-Attar M (2014) From misuse cases to mal-activity diagrams:

bridging the gap between functional security analysis and design.

Softw Syst Model 13:173–190. doi:10.1007/s10270-012-0240-5

27. Dik SC (1997) The theory of functional grammar: the structure of

the clause. Walter de Gruyter

28. El-Attar M (2010) Developing precise misuse cases with security

robustness analysis. SEKE. pp 571–576

29. Rosenberg D, Scott K (1999) Use case driven object modeling

with UML. Springer, Berlin

30. Mugridge R, Cunningham W (2005) Fit for developing software:

framework for integrated tests. Pearson Education

31. Selenium Browser Automation: Selenium IDE. http://docs.sele

niumhq.org/. Version 2.5.0. Last Accessed Mach 2014

32. Kundu D, Samanta D (2009) A novel approach to generate test

cases from UML activity diagrams. J Object Technol 8:65–83

33. Beizer B, Wiley J (1996) Black box testing: techniques for

functional testing of software and systems. IEEE Softw 13:98

34. Kutar M, Britton C, Wilson J (2000) Cognitive dimensions an

experience report. Proceedings of the twelfth annual meeting of

the Psychology of Programming Interest Group, Memoria, Coz-

enza Italy 2000:81–98

35. Wohlin C et al (2000) Experimentation in software engineering—

an introduction. Kluwer, Dordrecht

36. El-Attar M (2012) Towards developing consistent misuse case

models. J Syst Softw 85:323–339

Requirements Eng (2016) 21:1–27 27

123

http://dx.doi.org/10.1016/j.infsof.2013.10.004
http://www.iiba.org/babok-guide.aspx
http://dx.doi.org/10.1007/s10270-012-0240-5
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/

www.manaraa.com

Copyright of Requirements Engineering is the property of Springer Science & Business
Media B.V. and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

	Using security robustness analysis for early-stage validation of functional security requirements
	Abstract
	Introduction
	Background
	Exploiting use cases to derive acceptance tests
	Methodology
	Phase 1: Developing high-level security acceptance tests
	Phase 2: Performing security robustness analysis
	Phases 3 and 4: Developing and executing executable security acceptance tests (ESATs)
	Targeted coverage by the developed acceptance tests
	Utilization of the acceptance tests within a development methodology

	Tool support
	The faculty search committee subsystem case study
	Change review or decision illegally: misuse case
	Redirect review illegally: misuse case
	Validation
	Threats to validity
	Conclusion validity
	Internal validity
	Construct validity
	External validity

	Conclusion and future work
	Acknowledgments
	References

